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Abstract 

In the present paper, we investigate the Hyers-Ulam stability of the quadratic 
functional equation and the Jensen functional equation on unbounded domains. 

1. Introduction 

In 1940, Ulam [30] gave a wide ranging talk before the mathematics 
club of the University of Wisconsin, in which he discussed a number of 
important unsolved problems. Among those was the question concerning 
the stability of group homomorphisms: 



ELQORACHI ELHOUCIEN et al. 288

Let 1G  be a group and let 2G  be a metric group with the metric d. 
Given ,0>  does there exist a 0>δ  such that, if a function 

21: GGf →  satisfies the inequality ( ) ( ) ( )( ) δ≤yfxfxyfd ,  for all yx,  in 
,1G  then there exists a homomorphism 21: GGa →  such that 
( ) ( )( ) ≤xfxad ,  for all x in ?1G  

The case of approximately additive functions was solved by Hyers [8] 
under the condition that 1G  and 2G  are Banach spaces. Taking this fact 

into account, the Cauchy functional equation ( ) ( ) ( )yfxfyxf +=+  is said 

to have Hyers-Ulam stability on ( )., 21 GG  The result of Hyers was 
significantly generalized by Rassias [19]. Since then, the stability of 
several functional equations have been investigated. The terminology 
Hyers-Ulam-Rassias stability originates from these historical backgrounds. 

It should be remarked that, we can find in [5], [11], [24], and [25] a lot 
of references concerning the Hyers-Ulam-Rassias stability of functional 
equations, (see also [3], [4], [6], [7], [9], [14], [20], [21], and [23]). 

A stability problem for the quadratic functional equation 

( ) ( ) ( ) ( ) ,,,22 Eyxyfxfyxfyxf ∈+=−++  (1.1) 

was proved by Skof [26], and later by Jung [13] on unbounded domains. 

Equation (1.1) has been generalized by Stetkaer [29] to the more 
general equation 

( ) ( )( ) ( ) ( ) ,,,22 Eyxyfxfyxfyxf ∈+=σ+++  (1.2) 

where EE →σ :  is an automorphism of the normed space E such that 
,o I=σσ  (I denotes the identity). 

Recently, the stability theorem of Equation (1.2) and the Jensen 
functional equations 

( ) ( )( ) ( ) ,,,2 Eyxxfyxfyxf ∈=σ+++  (1.3) 

( ) ( )( ) ( ) ,,,2 Eyxyfyxfyxf ∈=σ+−+  (1.4) 

has been proved, (see [2], [16], and [17]). 
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In [18], the authors investigated the stability of Equations (1.2) and 
(1.3) on unbounded domains: {( ) }.:, 2 dyEyx ≥∈  

The stability problems of several functional equations on a restricted 
domains have been extensively investigated by a number of authors, we 
refer, for example, to [9], [12], [15], [27], and [28]. 

Our main goal in this paper is to investigate the Hyers-Ulam stability 
problem for the Equations (1.2), (1.3), and (1.4) on unbounded domains: 
{( ) }.:, 2 dxEyx ≥∈  

2. Hyers-Ulam Stability of Equation (1.2)  
on Unbounded Domains 

In this section, we will investigate the Hyers-Ulam stability of 
Equation (1.2) on unbounded domains: {( ) }.:, 2 dxEyx ≥∈  

Theorem 2.1. Let ,0,0 ≥δ≥d  and 0≥γ  be given. Assume that a 
mapping FEf →:  satisfies the inequalities 

( ) ( )( ) ( ) ( ) ,22 δ≤−−σ+++ yfxfyxfyxf  (2.1) 

( ) ( )( ) ,γ≤σ− xfxf  (2.2) 

for all Eyx ∈,  with .dx ≥  Then, there exists a unique solution 
FEq →:  of Equation (1.2) such that 

( ) ( ) ,2
5

2
5 γ+δ≤− xqxf  (2.3) 

for all .Ex ∈  

Proof. First, we will prove that the function ( ) ( )( )xfxfx σ−  is 
bounded on E. Let Ex ∈  such that dx <  and ( ) ,xx ≠σ  and let 

xz n2=  with n large enough, so ( ) ,, dzdz >σ>  and .dzx >−  By 
using now, the inequalities (2.1), (2.2), the triangle inequality, and the 
following equation 

( ) ( )( ) [ ( )( ) ( )( ) ( )( ) ( )]zxfzfxfzxzfxfxf −−σ−σ+−+σ−=σ− 22  

[ ( ) ( )( ) ( ) ( ) ( ) ( )( )]zxfzfxfzxzf σ−σ−−+σ−σ++ 22  
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[ ( ) ( )( )] [ ( )( ) ( ) ( )( )]zxzfzxzfzfzf σ−σ+−−+σ+σ−+2  

[ ( ) ( )( ) ( )],2 zxfzxf −−σ−σ+  

we get 

( ) ( ( ) ,52 γ+δ≤σ− xfxf  (2.4) 

for all .Ex ∈  Now, we will show that the function: ( ) ( ) ++ yxfyx,  

( )( ) ( ) ( )yfxfyxf 22 −−σ+  is bounded on E. Let Eyx ∈,  such that 

.dx <  If ,0=x  then we have ( ) ( )( ) ( ) ( )yffyfyf 20200 −−σ+++  

( )( ) ( ) ( ) ( ) .025202 ffyfyf +γ+δ≤−−σ=  For ,0≠x  we choose 

,,2 N∈= nxz n  and we discuss the following cases. 

Case 1. ( ) .xx −≠σ  

With n large enough, we have ( ) ,,, dzxdzxdz >+σ>+>  

( ) ,dzy >σ+  and ( ) .dzz >σ+  By using (2.1), (2.2), the triangle 

inequality, and the following decomposition: 

[ ( ) ( )( ) ( ) ( )]yfxfyxfyxf 222 −−σ+++  

[ ( )( ) ( )( ) ( ) ( )]zyfzxfzyzxfzyzxf +−+−+σ+++σ+++= 22  

[ ( )( ) ( )( ) ( ) ( )( )]yxfzfyxzfyxzf σ+−−+σ++σ++− 22222  

[ ( )( ) ( ) ( ) ( )( ) ( )( ) ( )]zyfzxfzyzxfzyzxf +−+σ−σ+σ++σ++++σ+ 22  

[ ( ) ( )( ) ( ) ( )]xfzfxzfxzf 222 −−σ++++  

)([ ( )( ) ( ) ( )]yfzfyzfyzf 222 −−σ++++  

[ ( ) ( )( ) ( ) ( )] [ ( )( ) ( )( )]yzfzyfzfzfzzfzf σ+−σ++−−σ++− 22222  

[ ( )( ) ( ) ( ) ( )( ) ( )( ) ( )],22 yxfzzfyxzzfyxzzf +−σ+−σ+σ+σ++++σ+−  

we obtain 

( ) ( )( ) ( ) ( ) .522 γ+δ≤−−σ+++ yfxfyxfyxf  (2.5) 



HYERS-ULAM STABILITY OF THE QUADRATIC … 291

Case 2. ( ) .xx −=σ  

In this case, we use the following relation: 

[ ( ) ( )( ) ( ) ( )]yfxfyxfyxf 222 −−σ+++  

[ ( ) ( )( ) ( ) ( )]yxfzfyxzfyxzf +−−σ+−+++−= 22222  

[ ( )( ) ( ) ( ) ( )( )]yxfzfyxzfyxzf σ+−−+−+σ++− 22222  

[ ( ) ( )( ) ( ) ( )]yfzxfyzxfyzxf 22222 −+−−σ++−+++−+  

[ ( ) ( )( ) ( ) ( )]yfzxfyzxfyzxf 22222 −+−σ++++++  

[ ( ) ( ) ( ) ( )] ,222222 xfzfxzfxzf −−−+++  

and we get 

( ) ( )( ) ( ) ( ) .322 δ≤−−σ+++ yfxfyxfyxf  (2.6) 

If ,0== yx  then we choose an arbitrary Ez ∈  with .dz =  So, by 
using the above decomposition (Case 2), we get ( ) .302 δ≤f  
Consequently, the inequality 

( ) ( )( ) ( ) ( ) ,5522 γ+δ≤−−σ+++ yfxfyxfyxf  

holds for all ., Eyx ∈  Now, in view of [1], we get the rest of the proof.   

Corollary 2.2. A mapping FEf →:  is a solution of Equation (1.2), 
if and only if 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ,022sup0 →−−σ+++→σ−
∈

yfxfyxfyxfandxfxf
Ey

 

(2.7) 

.+∞→xas    

Proof. According to our asymptotic condition, there exist two 
sequences ( )nδ  and ,nγ  monotonically decreasing to zero such that 

( ) ( )( ) ( ) ( ) ,22 nyfxfyxfyxf δ≤−−σ+++  

( ) ( )( ) ,nxfxf γ≤σ−  
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for all Eyx ∈,  with .nx ≥  By Theorem 2.1, it follows that there exists 
a unique solution of Equation (1.2): FEqn →:  such that 

( ) ,2
5

2
5 nn

nqxf γ
+

δ
≤−  (2.8) 

for all .Ex ∈  Let n and m be integers satisfying .0>> nm  In view of 
(2.8), we get 

( ) ,2
5

2
5

2
5

2
5 nnmm

mqxf γ
+

δ
≤

γ
+

δ
≤−  (2.9) 

for all .Ex ∈  Consequently, by using the uniqueness of ,nq  we obtain 

nm qq =   for all ., N∈mn  Finally, by letting ,+∞→n  we get that f is a 
solution of Equation (1.2). The reverse assertion is obvious.   

Corollary 2.3 ( ).I−=σ  Let ,0,0 ≥γ≥d  and 0≥δ  be given. 
Assume that a mapping FEf →:  satisfies the inequalities 

( ) ( ) ( ) ( ) ,22 δ≤−−−++ yfxfyxfyxf  (2.10) 

( ) ( ) ,γ≤−− xfxf  (2.11) 

for all Eyx ∈,  with .dx ≥  Then, there exists a unique solution 
FEq →:  of the quadratic functional equation (1.1) such that 

( ) ( ) ,2
5

2
5 γ+δ≤− xqxf  (2.12) 

for all .Ex ∈  

Corollary 2.4. A mapping FEf →:  is a solution of (1.1), if and 
only if 

( ) ( ) ( ) ( ) ( ) ( ) ,022sup0 →−−−++→−−
∈

yfxfyxfyxfandxfxf
Ey

 

(2.13) 

.+∞→xas   

Corollary 2.5 ( ).I=σ  Let 0>d  and 0>δ  be given. Assume that a 

mapping FEf →:  satisfies the inequality 
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( ) ( ) ( ) ,δ≤−−+ yfxfyxf  (2.14) 

for all Eyx ∈,  with .dx ≥  Then, there exists a unique additive 
mapping FEA →:  such that 

( ) ( ) ,5δ≤− xAxf  (2.15) 

for all .Ex ∈  

Corollary 2.6.  A mapping FEf →:  is additive, if and only if 

( ) ( ) ( ) ,0sup →−−+
∈

yfxfyxf
Ey

 (2.16) 

.+∞→xas   

By using the proof of Theorem 2.1 and Corollary 2.2, we get the 
following results. 

Corollary 2.7 [18]. A mapping FEf →:  is a solution of Equation 
(1.2), if and only if 

( ) ( )( ) ( ) ( ) ,022sup →−−σ+++
∈

yfxfyxfyxf
Ex

 (2.17)   

.+∞→yas   

Corollary 2.8 [18]. A mapping FEf →:  is a solution of Equation 
(1.2), if and only if 

( ) ( )( ) ( ) ( ) ,022 →−−σ+++ yfxfyxfyxf  (2.18)  

.+∞→+ yxas   

Corollary 2.9 [13]. A mapping FEf →:  is a solution of Equation 
(1.1), if and only if 

( ) ( ) ( ) ( ) ,022 →−−−++ yfxfyxfyxf  (2.19)  

.+∞→+ yxas   

Corollary 2.10 [28].  A mapping FEf →:  is additive, if and only 
if 

( ) ( ) ( ) ,0→−−+ yfxfyxf  (2.20)  

.+∞→+ yxas   
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3. Hyers-Ulam Stability of Equation (1.3)  
on Unbounded Domains 

In this section, we establish the Hyers-Ulam stability theorem for 

Equation (1.3) on unbounded domains: {( ) }.:, 2 dxEyx ≥∈  

Theorem 3.1. Let ,0,0 ≥δ≥d  and 0≥γ  be given. Assume that a 

mapping FEf →:  satisfies the inequalities 

( ) ( )( ) ( ) ,2 δ≤−σ+++ xfyxfyxf  (3.1) 

( ) ( )( ) ,γ≤σ+ xfxf  (3.2) 

for all Eyx ∈,  with .dx ≥  Then, there exists a unique additive 

mapping FEJ →:  as a solution of Equation (1.3) such that ( )( ) =σ xJ  

( ),xJ−  and 

( ) ( ) ( ) ,9120 γ+δ≤−− xJfxf  (3.3) 

for all .Ex ∈  

Proof. Let us show that the function ( ) ( )( )xfxfx σ+  is bounded 

on E. For each ,Ex ∈  such that dx <<0  and for xz n2=  with n 

large enough, we have. 

Case 1. ( ) .xx ≠σ  From ( ) ,, dzdz >σ>  and ( ) ,dzzx >−σ+  

the inequalities (3.1), (3.2), the triangle inequality, and the following 
equation 

( ) ( )( ) [ ( )( ) ( )( ) ( )( )]zfxfzxzfxfxf σ−σ+−+σ=σ+ 2  

[ ( ) ( )( ) ( ) ( )]zfzxzfzxzf 2−−++σ−σ++  

[ ( ) ( )( )] [ ( )( ) ( ) ( )( )],2 zxzfzxzfzfzf σ−σ++−+σ−σ++  

it follows that 

( ) ( ( ) .32 γ+δ≤σ+ xfxf  (3.4) 
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Case 2. ( ) .xx =σ  From the following relation, 

( ) ( )( ) [ ( ) ( ) ( )( ) ( )]zfzxzfzxzfxfxf 2−−σ++−+=σ+  

( ) ( )( )[ ],zfzf σ++  

we get 

( ) ( ( ) .γ+δ≤σ+ xfxf  (3.5) 

Consequently, we have 

( ) ( ( ) ,32 γ+δ≤σ+ xfxf  (3.6) 

for all { }.0−∈ Ex  

Now, we prove that the function: ( ) ( ) ( )( ) −σ+++ yxfyxfyx,  

( )xf2  is bounded on E. Let Eyx ∈,  such that .dx <  If ,0=x  then by 

using (3.6), we obtain 

( ) ( )( ) ( ) ( ) .02320200 ffyfyf +γ+δ≤−σ+++  (3.7) 

For ,0≠x  we choose ,,2 N∈= nxz n  and we discuss the following cases. 

Case 1. ( ) .xx ≠σ  For n large enough, we can easily verify that 

( ) ( ) ,,, dzzxdzxdzx ≥σ+−≥σ−≥−  and ( ) .dzyzx ≥++σ−  

Therefore, from (3.1), (3.2), the triangle inequality, and the following 
relation, 

( ) ( )( ) ( )xfyxfyxf 2−σ+++  

  [ ( ) ( ) ( )( ) ( )]zxfzyzxfyxf −−σ+σ+−++= 2  

[ ( )( ) ( )( ) ( )( )]zxfyxfzyzxf σ−−σ++++σ−+ 2  

[ ( ) ( )( ) ( )]zxfzzxfxf −−σ+−+− 2  

[ ( ) ( ) ( )( ) ( )]zfzzxfxf 2−+σ−σ+−  

[ ( ) ( )( ) ( )( ) ( )( )]zfyxfzyzxf σ−+σ+σ+σ+−− 2  
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[ ( )( ) ( ) ( ) ( )( ) ( )( )]zxfzyzxfyxf −σ−σ+σ+−σ++σ+ 2  

[ ( )( ) ( )( )] [ ( ) ( )( )]zfzfzxfzxf σ+−−σ+σ−+ 22  

[ ( )( ) ( ) ( )( )]zzxfzzxf +σ−σ+σ+−+  

[ ( )( ) ( ) ( ) ( )( )],zyzxfzyzxf σ+σ+−σ+++σ−−  

we get 

( ) ( )( ) ( ) .662 γ+δ≤−σ+++ xfyxfyxf  (3.8) 

Case 2. ( ) .xx =σ  By using (3.1), (3.2), and the following decomposition 

( ) ( )( ) ( )xfyxfyxf 2−σ+++  

[ ( ) ( )( ) ( )]zxfzyzxfzyzxf −−+σ+−+++−= 2  

[ ( ) ( )( ) ( )]zfzxzfzxzf −−+σ+−+++−− 2  

[ ( ) ( ) ( )],2 zfxzfxzf −−+−++−+  

we get 

( ) ( )( ) ( ) .32 δ≤−σ+++ xfyxfyxf  (3.9) 

If ,0 yx ==  then we choose an arbitrary Ez ∈  such that .dz =  By 

using the above decomposition (Case 2), we obtain ( ) .30 δ≤f   

Finally, the inequality 

( ) ( )( ) ( ) ,682 γ+δ≤−σ+++ xfyxfyxf  (3.10) 

holds true for all ., Eyx ∈  Now, from [16], one gets that there exists a 

unique additive mapping ,: FEJ →  which satisfies the inequality (3.3). 

Furthermore, ( )( ) ( )xJxJ −=σ  for all .Ex ∈  This completes the proof of 

theorem.   

Corollary 3.2. A mapping FEf →:  is a solution of Equation (1.3), 

if and only if 
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( ) ( )( ) ( ) ( )( ) ( ) ,02sup0 →−σ+++→σ+
∈

xfyxfyxfandxfxf
Ey

 (3.11)  

.+∞→xas   

Corollary 3.3 ( ).I−=σ  Let ,0,0 ≥γ>d  and 0>δ  be given. 

Assume that a mapping FEf →:  satisfies the inequalities 

( ) ( ) ( ) ,2 δ≤−−++ xfyxfyxf  (3.12) 

( ) ( ) ,γ≤−+ xfxf  (3.13) 

for all Eyx ∈,  with .dx ≥  Then, there exists a unique additive 

mapping FEJ →:  solution of the Jensen functional equation (1.3) such 
that ( ) ( ),xJxJ −=−  and 

( ) ( ) ( ) ,9120 γ+δ≤−− xJfxf  (3.14) 

for all .Ex ∈  

Corollary 3.4. A mapping FEf →:  is a solution of (1.3), if and 

only if 

( ) ( ) ( ) ( ) ( ) ,02sup0 →−−++→−+
∈

xfyxfyxfandxfxf
Ey

 (3.15)  

.+∞→xas   

Corollary 3.5 [18]. A mapping FEf →:  is a solution of (1.3), if 

and only if 

( ) ( )( ) ( ) ,02sup →−σ+++
∈

xfyxfyxf
Ex

 (3.16)  

.+∞→yas   

Corollary 3.6 [18]. A mapping FEf →:  is a solution of (1.3), if 

and only if 

( ) ( )( ) ( ) ,02 →−σ+++ xfyxfyxf  (3.17)  

.+∞→+ yxas   
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4. Hyers-Ulam Stability of Equation (1.4)  
on Unbounded Domains 

In this section, we investigate the stability of the Jensen functional 

equation (1.4) on a restricted domain: {( ) }.:, 2 dxEyx ≥∈  

Theorem 4.1. Let 0≥d  and 0≥δ  be given. Assume that a mapping 
FEf →:  satisfies the inequality 

( ) ( )( ) ( ) ,2 δ≤−σ+−+ yfyxfyxf  (4.1) 

for all Eyx ∈,  with .dx ≥  Then, there exists a unique additive 

mapping FEj →:  solution of the Jensen functional equation (1.4) such 

that ( )( ) ( ),xjxj −=σ  and 

( ) ( ) ,3δ≤− xjxf  (4.2) 

for all .Ex ∈  

Proof. Let Eyx ∈,  such that .0 dx <<  We choose ,2 xz n=  

where n is large enough, so ,, dzxdz ≥+≥  and ( ) .dxz ≥σ+  From 

(4.1), the triangle inequality, and the following decomposition, 

[ ( ) ( )( ) ( )]yfyxfyxf 22 −σ+−+  

[ ( ) ( ) ( )( ) ( )]yxfyxzfyxzf +−σ+σ+−++−= 2  

[ ( )( ) ( )( ) ( )( )]yxfyxzfyxzf σ+−+σ+−σ+++ 2  

[ ( ) ( )( ) ( )]yfyzxfyzxf 2−σ++−+++  

[ ( )( ) ( ) ( )( ) ( )],2 yfyxzfyxzf −σ+σ+−+σ++  

we have 

( ) ( )( ) ( ) ,22 δ≤−σ+−+ yfyxfyxf  (4.3) 

for all Eyx ∈,  with .0≠x  Now, if ,0=x  the following relation with an 

arbitrary Ez ∈  such that dz =  
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[ ( ) ( )( ) ( )]yfyfyf 2002 −σ+−+  

[ ( ) ( )( ) ( )]yfyzfyxzf 2−σ+−++−=  

[ ( )( ) ( ) ( )( )]yfyzfyzf σ−+−σ++ 2  

[ ( ) ( )( ) ( )] ,22 yfyzfyzf −σ+−++  

implies that 

( ) ( )( ) ( ) ,2200 δ≤−σ+−+ yfyfyf  

for all .Ey ∈  Consequently, 

( ) ( )( ) ( ) ,22 δ≤−σ+−+ yfyxfyxf  

for all ,, Eyx ∈  so from [17], there exists a unique additive mapping 
FEj →:  such that ( )( ) ( )xjxj −=σ  and ( ) ( ) .3δ≤− xjxf  This ends 

our proof.   

Corollary 4.2. A mapping FEf →:  is a solution of Equation (1.4), 
if and only if 

( ) ( )( ) ( ) ,02sup →−σ+−+
∈

yfyxfyxf
Ey

 (4.4) 

.+∞→xas  

Corollary 4.3 ( ).I−=σ  Let 0>d  and 0>δ  be given. Assume that 
a mapping FEf →:  satisfies the inequality 

( ) ( ) ( ) ,2 δ≤−−−+ yfyxfyxf  (4.5) 

for all Eyx ∈,  with .dx ≥  Then, there exists a unique additive 
mapping FEj →:  solution of the Jensen functional equation (1.4) such 
that ( ) ( )xjxj =−  and 

( ) ( ) ,3δ≤− xjxf  (4.6) 

for all .Ex ∈  

Corollary 4.4. A mapping FEf →:  is a solution of (1.4), if and 
only if 

( ) ( ) ( ) ,02sup →−−−+
∈

yfyxfyxf
Ey

 (4.7) 

.+∞→xas  
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